

MAREFORMER

Methanol Reformer

Off-Grid & Sustainable & Mobile energy solutions
THIBAUD VINCENDON 27/11/2025

methanolreformer.com | info@methanolreformer.es

Key concepts

- > Why Methanol Reformer?
- > Pragmatic and realistic approach
- From and old mix...to a new one: no competition
- Current issues: electric demand vs offer, access to the grid, hard to abate sectors, transport etc.
- And last but not least...cost!

Hydrogen logistics challenges

"H₂ is easy to produce but expensive to transport"

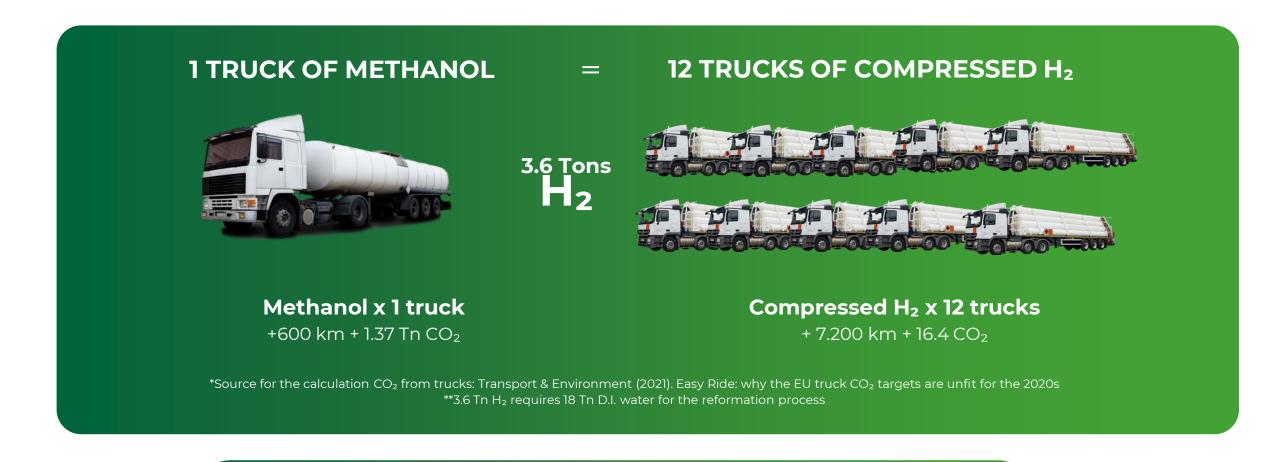
Ideal situation:

• Electrolyzer close to the final destination (within 50 meters).

Non-ideal situation:

- Electrolyzer far from the destination (>100 km), leading to **high** transportation costs and inefficiencies.
- Long distances example:

Hydrogen pipe
Not yet ready



Compressed H₂ transport

Non- efficient

Why methanol? It is the most officient

It is the most efficient solution for hydrogen logistics

- One 30 ton gas truck can only carry 300 kgs of H2 (**<M30 daily production**)
- One 30 ton methanol truck can carry **12 times** more.
- H2 Compressed: 1% to 5% Boil Off/day during the whole production/transport/stock cycle)
- ullet For long distance transportation methanol beats compressed H_2
- * 250 bars pressure

Methanol Sources

Green vs conventional productions systems

NATURAL GAS

From conventional Fuel (Methane) - Extraction from well and reformed

CO₂ CAPTURED

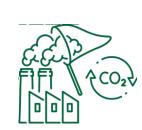
Captured from conventional fuel combustion or industrial emissions.

E.g., cement, steel production...

BIO-METHANOL

produced from biomass

- From agricultural waste (Biodigestors)
- From dumping site & sewage (Direct)



Methane Gas (biogas)

 $CH_4 + H_2O$ steam ->

CO₂ captured

(CO + 2H₂) + Catalyzer -Z CH₃OH

E-METHANOL

- Green hydrogen + CO₂ captured
- Renewable electricity

- From biomass burning
- From industrial process

 $CO_2 + 3H_2 -> CH_3OH + H_2O$

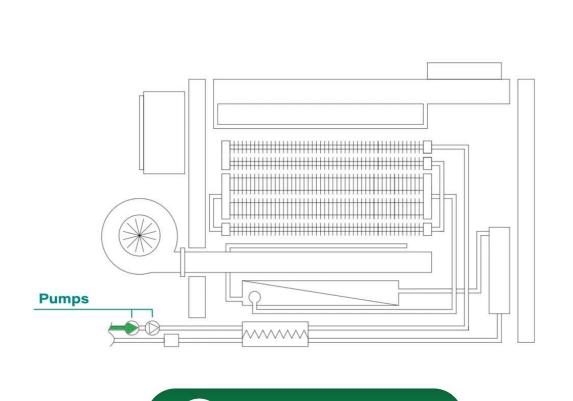
H₂ from renewable source

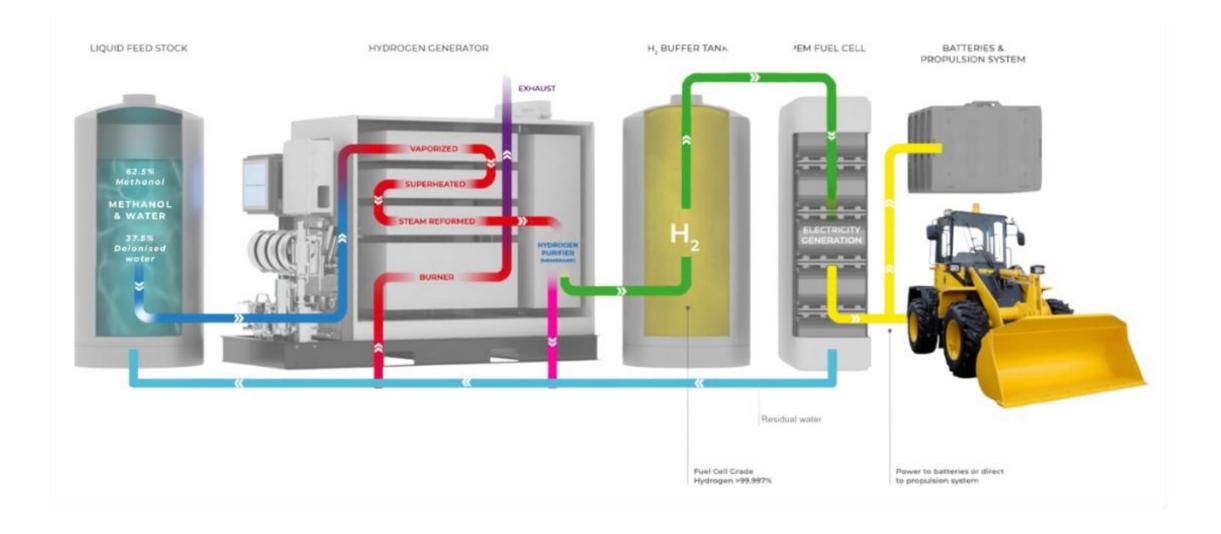
Core Product: Methanol-reforming Medium power (L/M18) / High power (L/M30)

Strong points:

- High purity (99,997%) H₂ for Fuel Cells (ISO 14687 for H₂ mobility)
- No emissions of NOx & SOx & PMs
- Low CO2 emissions (or carbon neutral if green)
- Lower OPEX & CAPEX
- 24/7 Run Times & Long lasting
- Independent from Grid
- No Operator Needed & Remote Monitoring

Weight:





Dimensions 879 x 2,080 x 1,380 mm (LxWxH): 1,500 kg

Outlook of methanol-reforming process L/M18 & e-Nomad

STATIONARY SOLUTION

MReformer Solutions

Medium power (L/M18) / High power (L/M30)

Hydrogen generator: Basic unit

Produces: 9.8 kg H2/h / 16,2 kg H2/h

Up to: 150kW / 250kW

MOBILE SOLUTION

e-Power container Mobile 150 kW output

CPG - 250 kW - L/M30

e-Power container Mobile 250 kW output

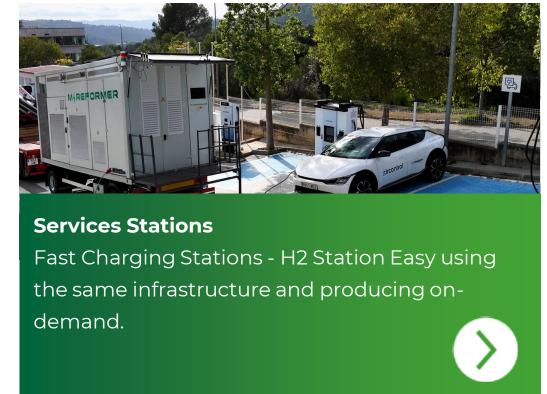
H-Nomad - L/M18/30

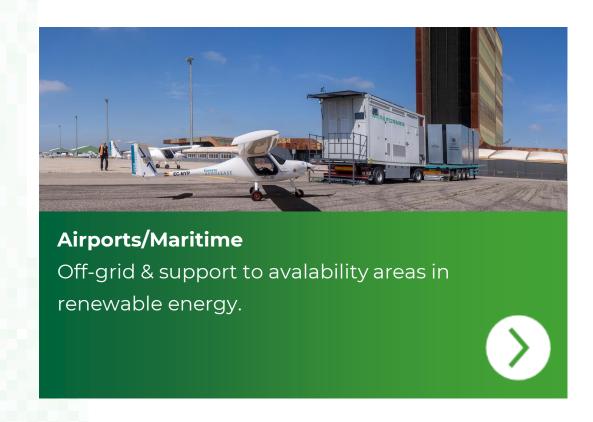
h-Power container Mobile Up to 16.2 kg H2/h

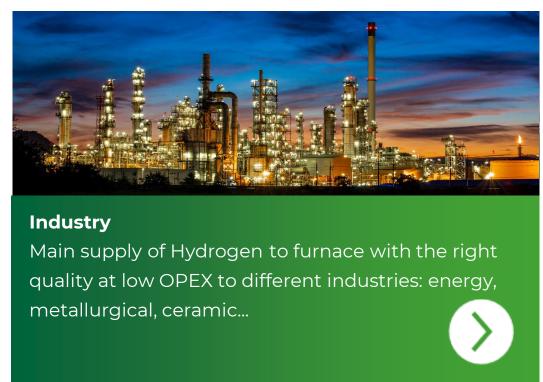
CHG3 - L/M30 (20ft) /

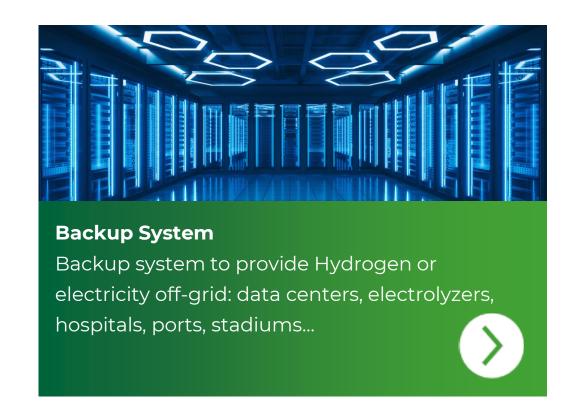
CHG6 - L/M30 (40ft)

Containerized H2 generation stationary Up to 50 kg H2/h




*In the annex, you will find the product datasheets.




Crosssectorial applications

Methanol Reformer's role Maritime Applications

Ports/Fleets Sustainability **Functionality Enhancing** and **Alternative Power Sources**

- Onboard use in fuel cells or as a combustion enhancer for engines.
- Port-side energy supply for heavy equipment (cranes, trucks, forklifts).
- Multi MW applications
- Free Carbon Emission reduction if feedstock complies:
- 1. With **RFNBO** methanol
- 2. With **Bio-methanol**
- Alignment with **green fuel diversification** strategy
- Efficient & reliable system as principal or back up Partnerships:

Civil works / Mining Electricity supply in remote areas

ENERGY SUPPLY TO ELECTRIC MACHINERY:

Unbuilt land is often far from the electrical grid. Even if it's near the grid, it may not have enough power capacity.

What does on-site charging avoid?

- Transporting batteries to the city
- Use of diesel generators
- Pollution from the battery transport system
- Inactivity due to the logistics of battery charging

Main expansion target 2025 -2030 Electric or Hydrogen supply on-site

ELECTRIC CHARGING - EU DIRECTIVE (2026)

- Fast charging on major roads: availability of 400 kW every 60 km on key corridors.
- Infrastructure challenge: in some locations, it will be impossible to obtain such high power from the grid, requiring alternative solutions like energy storage or on-site generation.

HYDROGEN REFUELING – EU DIRECTIVE (2030)

 Hydrogen refueling on high-traffic roads (TEN-T): deployment of a Hydrogen Refueling Station (HRS) every 200 km by 2030.

O1 Our history O2 H₂ logistics challenges O3 Why methanol O4 Portfolio O5 Applications O6 Key Milestones O7 Contact O8 Annex

Industrial applications

Electricity and/or H2 supply for the industry

INDUSTRIAL APPLICATIONS:

- 99.997% purity
- High flow rate
- Constant on-site supply
- Reduction in logistics costs and CO2 emissions
- Lower CAPEX/OPEX compared to other solutions like electrolysis

Applications in industrial furnaces, turbines, chemical industry, fertilizers, refining applications, and more.

O1 Our history O2 H₂ logistics challenges O3 Why methanol O4 Portfolio O5 Applications O6 Key Milestones O7 Contact O8 Annex

Backup System

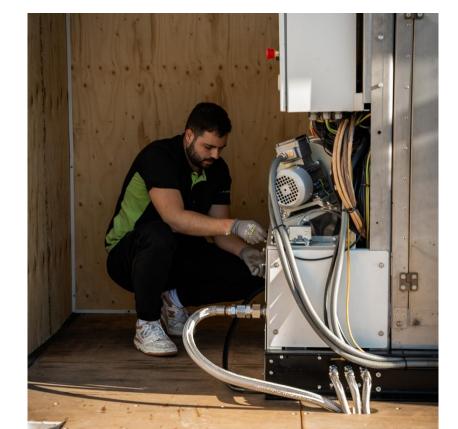
Reliable and efficient supply to ensure operational continuity

INDUSTRIAL APPLICATIONS:

- HIGH purity (99.997%)
- Constant and high flow rate
- Uninterrupted on-site supply
- Reduction in operational costs and CO2 emissions
- Lower CAPEX/OPEX compared to traditional solutions

Applications in data centers, telecom infrastructure, critical facilities, remote locations, backup during power outages.




From PowerPoint to power plants

We do not do prototypes, we implement real projects

Current and next installations:

- Several small models in the USA
- 1 reformer in NEOM (Saudi Arabia)
- 1 M18 in Norway (DRIV)
- 1 E-nomad in the Nehterlands
- 1 E-nomad in Spain for maritime sector (Balearia)
- 16 reformers M30 for maritime sector (2026/27)
- First reformer in Japan in 2026 for Mitsubishi Gas Chemical
- 2 H-nomads for hospital in Spain with HRS in 2026
- LOI for 5 H-nomad in easter Europe for 2026
- LOI for a reformer in a Spanish island for 2026
- LOI for an E-nomad in Japan

Key takeaways for Brazil

- > Important asset: biogenic CO2
- > Choose you battlefield for methanol applications:
 - Port, bunkering, maritime applications, shipping
 - Off grid sectors
 - Industry/blending
 - Huge volumes with transport issues

Why a Methanol Reformer System

Environmentally friendly

Emissions reduction and support of clean energy adoption

Low CAPEX

Cost-effective investment of deployment

Low OPEX

Energy efficient with minimal operational costs

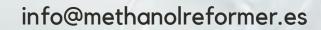
Scalable design, ranging from 150 kWh to several MW to meet various energy needs

Fast Hydrogen/Power Availability

Hydrogen supply takes less than 3 min from hot stand-by

High Energy Efficiency

- >80% efficiency in H2 systems
- >35% efficiency in electric systems


MAREFORMER

OBRIGADO

www.methanolreformer.com

tvincendon@methanolreformer.es

WTC. Moll de Barcelona s/n Edificio Este Planta 5. 08039 Barcelona (Spain)

www.linkedin.com/company/m-reformer

